(物理与材料科学学院 周海静 刘 宁)

图4.M33的旋转曲线

毕效军作了题为“AMS-02观测结果和我国空间实验的科学预期”的学术报告。他针对国际空间站的AMS-02实验,详细介绍了AMS-02的观测结果,并运用物理学原理对相关结果进行了解释,对暗物质信号的限制因素进行了简单说明。之后,他简要介绍了我国发射暗物质粒子探测卫星“悟空”来寻找暗物质信号的基本情况,以及“悟空”现阶段的观测结果。

那么暗物质又是如何被发现的呢?我们可以从太阳系中海王星的发现历史得到很多启发,从而更好理解暗物质的发现。自从牛顿发现了万有引力定律以来,天文学家成功地解释了大部分行星的运行轨道,如图2所示。然而,对天王星运行轨迹却不能得到令人满意的解释,它的运动规律和万有引力的预言有着明显的差异。法国天文学家勒维耶和英国天文学家亚当斯猜测太阳系中应该还存在一颗当时还没有发现的行星,这颗行星的引力使得天王星的运动偏离了原来预期的轨道。根据他们的预言,伽勒在1846年发现了这颗行星,即海王星。这个故事就非常像今天的暗物质,虽然我们没有观测到暗物质的任何电磁辐射,但我们却观测到了暗物质的引力对于其他可见物质运动的影响,这就是天文学家推断宇宙中存在暗物质的理由。

报告会结束后,毕效军就相关问题与在场师生进行了热烈的讨论。

图片 1

6月8日下午,应我校物理与材料科学学院邀请,中国科学院高能物理研究所粒子天体中心研究员毕效军来我校讲学。学术报告会在物理南楼学术报告厅举行,物理与材料科学学院相关专业教师、研究生和部分本科生参加了报告会。报告会由物理与材料科学学院副院长曹俊杰主持。

图片 2

暗物质的直接探测就是寻找当暗物质粒子打到探测器后所留下来的信号,通常这个信号非常的微弱,而宇宙线的噪声信号要远大于暗物质的散射信号。因而,为了探测到这样微弱的信号,需要把探测器放在很深的地下实验室以把宇宙线噪声屏蔽掉。图7显示的是世界上地下实验室的分布以及每个实验室中所开展的暗物质直接探测实验。我国的四川锦屏地下实验室于2010年建成,是目前最深的因而也是宇宙线噪声最小的地下实验室,非常适于暗物质探测实验的开展,目前有两个直接探测实验正在锦屏地下实验室进行。不过,尽管直接探测实验已经开展了大约30年的时间,实验灵敏度有了巨大的提高,但是到目前为止,还是没有发现令人信服的暗物质散射的信号。

图片 3

图2.太阳系的行星结构

以上所介绍的是通过星系中恒星的旋转速度判断暗物质的存在,是暗物质存在最直接的观测证据。其他天文观测还有许许多多,无不证实了宇宙中暗物质的存在,比如星系团中热气体的分布、星系团所造成的引力透镜效应、宇宙中微波背景的观测等均在更大的尺度上证实了暗物质的存在。今天,天文学家建立了一个“标准宇宙学模型”,这个模型中宇宙由68%的暗能量、27%的暗物质和5%的普通物质组成,可以成功解释几乎到目前为止所有的宇宙学观测现象,可以说是当前人类对宇宙的最新认识。

图3.太阳绕银河系运动的参数

图片 4

图1.不同波长的电磁波辐射

我国的“悟空”卫星就是希望能够在更高的能量范围内测量宇宙线电子的能谱(由于“悟空”探测器不带磁场,因而无法区分正负电荷,它测量的实际是电子和正电子加起来的能谱,我们统称为电子能谱),从而可以帮助研究宇宙线超出的正电子的来源。“悟空”的第一个实验结果在2017年底发表,这个结果是第一次通过空间直接探测,把宇宙线电子的能量测量到4.6TeV,并发现了能谱的“拐折”的结构,但是,这些还是不足以确认是否存在暗物质。寻找暗物质可能需要在更高能量及更高精度上进行研究。我国空间站的未来宇宙线实验HERD将可能在这方面取得重要的突破,为暗物质寻找提供更多的线索。

图片 5

图6.暗物质的三种探测方式

总之,暗物质问题是当前基础物理学研究中一个至关重要的问题,科学家为解决这一问题做出了不懈的努力。然而,这些探寻暗物质的工作,尽管取得了巨大的进步,获得了多方面的科研成果,却仍然没有找到确定的暗物质信号,暗物质之谜将继续存在并依然困扰着人们。可喜的是,我国科学家在这一领域虽然起步较晚,但已经取得了国际领先的成果,在不同暗物质探测方向上都显示了极强的竞争力。(本文选自《现代物理知识》2018年第2期,作者为中国科学院高能物理研究所研究员毕效军)

图片 6

图7.世界上的地下实验室分布和相应实验室开展的直接探测实验

图片 7

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章